Anti-Fuzzy Sub algebras and Anti Fuzzy K-ideals In INK-Algebras

R.Rajakumari¹ and KR.Balasubramanian² Research scholar¹ and Assistant Proferssor^{2,} ^{1,2}Department of mathematics, H. H. The Rajah's college, Pudukkottai-622-001, Tamil Nadu, India

Abstract:

The aim of this paper is introduce the notion of anti-fuzzy sub algebras and anti-fuzzy K-ideals in INK-algebras, several theorems, properties are stated and proved. The fuzzy relations on INK-algebras are also studied.

Keywords:

INK- algebras, Anti homomorphism, Anti fuzzy K- ideal, anti-fuzzy subgroup, anti-fuzzy sub algebra, Cartesian product, level subset, conditions stated.

1. Introduction

K. Iseki and Tanaka introduced two classes of abstract algebras BCI-algebras and BCK-algebras in[2]. It is known that the class of BCK-algebras is a proper subclass of the class of BCIalgebra. Q.P. Hu and X. Li introduced a wide class of abstract algebra namely BCH- algebras. L.A. Zadeh ,(1965), introduced the notion of fuzzy sets in [7]. This idea has been applied to several mathematical branches. Xi applied this concept to BCK- algebra.W.A. Dudek (1992) fuzzified the ideals in BCCalgebras. Y.B.Jun (2009) contributed a lot to develop the theory of fuzzy sets. M.Kaviyarasu et.all(2017), introduced a new notion called INK-algebra in[11], which is a generalization of TM/Q/ BCK/ BCI/ BCHalgebra and investigated some properties. In this study, we introduce the concepts of anti-fuzzy sub algebras and anti-fuzzy K-ideals in INK-algebra and investigate some of their properties.

2 Preliminaries

In this section we first review some elementary aspects which are useful in the sequel.

Definition: 2.1[2]

A BCK-algebra is algebra (X, *, 0) of type (2, 0) satisfying the following conditions:

- i) ((x * y) * z = x * (z * (0* y)),
 ii) (x *(x * y)) * y = 0,
- iii) x * x = 0,
- iv) 0 * x = 0,

v) x * y = 0 and y * x = 0 imply x = y for all x, y, $z \in X$. We can

Define a partial ordering \leq on X by $x \leq y$ is defined by x * y = 0.

Definition 2.2.[11]

A INK-algebra (X,*,0) is a non-empty set X with a constant '0' and a binary operation * satisfying the following axioms :

i) x * x = 0,

ii) x * 0 = x, for $x \in X$.

iii)
$$0 * x = x$$
,

iv) (x * y) * z = x * (z * (0 * y))

In X we can define a binary relation \leq by $x \leq y$ if and only if x * y = 0.

Example: 2.3.[11]

Consider the set $X = \{0, 1, 2, 3\}$ with the following table

			1		
*	0	1	2	3	
0	0	1	2	3	
1	1	0	3	2	
2	2	3	0	1	
3	3	2	1	0	

Then we easily check that (X, *, 0) is a INK-algebra since Then we easily can check that (X, *, 0) is a k-algebra, since we have x * x = 0, x * 0 = 0 and

(x * y) * z = x * (z * (0 * y)), for all $x, y, z \in X$.But (X,*,0) is not a INK-algebra,

Since $0 * 1 \neq 0$

$$x=0.v=1.z=3$$

$$(1*3) = (3*1)$$

2=2 hence verified,

3. Anti-Fuzzy sub algebras of k-ideals

Definition:3.1.

A fuzzy set μ of X is called a anti-fuzzy sub algebra of K if $\mu(x * y) \le max \{ \mu(x), \mu(y) \}$, for all x, $y \in X^{\sim}$

Definition: 3.2.

A fuzzy set μ of X is called a anti fuzzy *ideals* of K if it satisfies:

(i) $\mu(0) \leq \mu(x)$,

(ii) $\mu(x) \leq max\{ \mu(x * y), \mu(y * (y * x)) \}$ for all x, y ϵX

Clearly x = 0 gives μ is a anti-fuzzy ideal of X.

Definition: 3.3.

 $\label{eq:general} \begin{array}{ll} \mbox{Let }G \mbox{ be a group. A fuzzy subset }\mu \mbox{ of a group }G \mbox{ is called a anti fuzzy } & \mbox{subgroup of the group if } \\ (i) \ \mu \ (xy) \leq max \{ \mu(x) \ , \ \mu(y) \} \ \mbox{for every } x, y \in G \ \mbox{and} \end{array}$

(ii) $\mu(x^{-1}) = \mu(x)$ for every $x \in G$

Example:3.4.

Consider the set $X = \{0, 1, 2, and 3\}$ with the following *cayley*'s table:

*	0	1	2	3	
0	0	1	2	3	
1	1	0	3	2	
2	2	3	0	1	\leq
3	3	2		0	

Define a fuzzy set μ in X as by $\mu(0) = 0.5$,

$$\mu(1) = 0.6, \ \mu(2) = 0.7 \ \mu(3) = 0.9.$$

. It is easy to verify that μ is a anti fuzzy K-ideal of X.

Theorem: 3.5.

If μ is a anti fuzzy sub algebra of a INK –algebra X, then μ (0) $\leq \mu(x)$, for any $x \in X$.

Proof. Subsequently x * x = 0, for any $x \in X$, then:

 $\mu(0) = \mu(x * x) \le \max \{\mu(x), \mu(x)\}$

 $\Rightarrow \mu(0) = \mu(x).$

Theorem: 3.6.

If μ is a anti fuzzy sub algebra of a INK –algebra X, then $\mu(0) \leq \mu(x)$, for any $x \in X$.

Proof:

Subsequently x * x = 0, for any $x \in X$, then:

$$\mu(0) = \mu(x * x) \le \max\{\mu(x), \mu(x)\}$$
$$\Rightarrow \mu(0) = \mu(x).$$

Theorem: 3.7.

A fuzzy set μ of an INK-algebra X is a anti fuzzy sub algebra if and only if for every t $\in [0,1] \mu_t$ is either empty of a anti fuzzy sub algebra of X.

Proof.

Assume that μ is a anti fuzzy sub algebra of X. and $\neq \emptyset$

Then for any x, $y \in \mu_t$

we have, $\mu(x * y) \le \max \{\mu(x), \mu(y)\} \le t$.

Therefore $x, y \in \mu_t$

 μ_t . Hence μ_t is anti-fuzzy sub algebra of X. Conversely, μ_t is

a anti fuzzy sub algebra of X. Let x, y \in X.

Take t = max { $\mu(x)$, $\mu(y)$ }. Then by assumption μ_t is anti-fuzzy sub algebra of X implies:

 $x * y \in \mu_t$. Therefore $\mu(x * y) \le t = \max \{\mu(x), \mu(y)\}$

. Hence μ is a anti fuzzy sub algebra of X.

Definition: 3.8.

Let G be a group .A fuzzy subset μ of a group G is called a anti fuzzy subgroup of the group if

(i) $\mu(xy) \le \max\{\mu(x), \mu(y)\}\)$, for every x, y ϵG

(ii) $\mu(x^{-1}) = \mu(x)$, for every x, y ϵG

Theorem: 3.9.

Anti-fuzzy sub algebra is a anti-fuzzy subgroup.

Proof:

Consider a anti-fuzzy sub algebra on the algebra A then there exists a

Fuzzy set $\mu \in K^A$ then for

(i) nullary operation

From (1) let $x_2 = y$

```
\mu(f(xy)) \le \mu(x)^* \mu(y) -----(2)
```

```
since \mu(x^*y) \le \max{\{\mu(x), \mu(y)\}} -----(3)
```

from (2) and (3)

$$\mu(x)^*\mu(y) = \mu(x^*y) \le \max\{\mu(x), \mu(y)\} - \dots - (4)$$

Let $\mu: X \rightarrow [0, 1]$

Therefore $\mu: X^{-1} \rightarrow [0, 1].$

(ii) nullary operation (for any constant)

If there exist any constant $\mu(c)$ then

$$\mu(c) * \mu(x) = \mu(c * x) \le \max \{\mu(c), \mu(x)\} = \mu(x) - \dots - (6)$$

 $\mu(c) \leq \mu(x)$, for all $x \in A$.

: all the element of $\mu(x)$ lies between 0 & 1. Also $\mu(c)$ is any constant and ≤ 1. Using the results (4), (5) and (6), it is clear that anti-fuzzy sub-algebra is a anti-fuzzy sub-group.

Theorem: 3.10.

A anti fuzzy sub algebra of a group G is a anti-fuzzy subgroup of the group G iff

```
\mu(xy^{\text{-}1}) \leq max\{ \ \mu(x) \ , \ \mu(y) \ \} \ for \ every \ x,y \in G.
```

Proof:

Real part:

Consider a anti-fuzzy sub algebra of a group G is a anti fuzzy subgroup on the algebra A then we have to prove that

 $\mu(xy^{-1}) \le \max \{ \mu(x), \mu(y) \}$

For anti-fuzzy sub algebra there exist a fuzzy set μ CKA, then

(i) For n – ary operation

$$\mu(f(x_1,\ldots,x_n)) \leq \mu(x_1)^*,\ldots,\ast\mu(x_n) \text{ for all } x_1,\ldots,x_n \in A$$

Let $x_1, x_2 \in k$ where $k \in G$. Consider $x_1 = x$ and $x_2 = y^{-1}$

Since it is a anti fuzzy subgroup using theorem (1)

Therefore
$$\mu(f(x_1 x_2)) = \mu(f(x y^{-1}))$$

 $\leq \mu(x) * \mu(y^{-1})$

$$\mu(x) * \mu(y^{-1}) = \mu(x * y^{-1})$$

since anti fuzzy algebra satisfies fuzzy relation

so
$$\mu(x * y^{-1}) \le \mu(x) \lor \mu(y^{-1})$$
 using equation (5)
$$\le \mu(x) \lor \mu(y)$$
$$\le \max \{\mu(x), \mu(y)\}$$

i) For nullary operation

$$\mu(c) \le \mu(x)$$
 for all $x \in A$.

Using theorem (1), it is a subgroup

 $\div\,$ Let $\mu(e)$ be an identity element ,

We know that $\mu(c) \leq \mu(x)$

$$\mu(c) = \mu(c) * \mu(e^{-1}) \le \mu(c) * \mu(e) \text{ using equation (5)}$$
$$\le \mu(c) \lor \mu(e)$$
$$\le \max{\{\mu(c), \mu(e)\}} = \mu(e) - \dots - (7)$$

C is any constant it may be \leq identity element

$$\mu(x) = \mu(x) * \mu(e^{-1}) \le \mu(x) * \mu(e)$$
 using equation (5)

 $\leq \mu(x) \lor \mu(e)$

$$\leq \max \{\mu(x), \mu(e)\} = \mu(x) - \dots + (8)$$

Converse part:

If $\mu(xy^{-1}) \le \max{\{\mu(x), \mu(y)\}}$ for every x, y \in k and k \in G then a fuzzy partially ordered subset μ of a group is a anti fuzzy subgroup of the group G.

Proof:

$$\mu(xy^{-1}) \leq \max\{\mu(x), \mu(y^{-1})\}$$

 $\leq \max \{ \mu(x), \mu(y) \} \text{ using } (5)$

$$\leq \mu(x) \vee \mu(y)$$

 μ (xy⁻¹) = μ (x * y⁻¹) using fuzzy algebra relation.

$$\mu(x * y^{-1}) = \mu(x) * \mu(y^{-1}) = \mu(x) * \mu(y)$$

 $\leq \mu(f(x y))$ (n- ary operation)

$$\Rightarrow \mu(f(x y)) \le \mu(x) * \mu(y) - \dots (9)$$

Let $\mu(c)$ and $\mu(e)$ be a any constant identity element, then

Assume that $\mu(c) = \mu(x)$

 $\mu(c) * \mu(e^{-1}) = \mu(x) * \mu(e^{-1})$

Using (5) μ (c) * μ (e⁻¹) = μ (x) * μ (e⁻¹)

$$\mu(c) * \mu(e) \le \max \{ \mu(c), \mu(e) \} = \mu(e)$$

$$\mu(x) * \mu(e) \le \max\{ \mu(x), \mu(e) \} = \mu(x)$$

C is constant it may be \leq identity element and x

Therefore, $\mu(c) \le \mu(x) -----(10)$

From (9) and (10) we get, If $\mu(xy^{-1}) \le \max\{\mu(x), \mu(y)\}\$

Hence anti fuzzy sub algebra is a anti fuzzy subgroup

Result: 3.11.

A fuzzy subset μ of a group G is a anti fuzzy subgroup G \Leftrightarrow

 $\mu(xy^{-1}) \le \max \{ \mu(x), \mu(y) \}$ for every x, y $\in G$

4. Anti-Fuzzy k-ideals in INK-algebra:

Definition: 4.1.

A fuzzy subset μ in a INK-algebra X is called a anti fuzzy ideal of X, if:

i) $\mu(0) \leq \mu(x)$

ii) $\mu(x) \le \max{\{\mu(x * y), \mu(y)\}}$, for all x, y, z $\in X$.

Definition:4.2.

A fuzzy subset μ in a INK-algebra X is called a anti fuzzy K- ideal of X, if:

 $(i)\mu(0) \leq \mu(x)$

 $(ii)\mu(x) \leq max \left\{ \mu(z \ ^{\ast} x) \ ^{\ast} (z \ ^{\ast} y), \, \mu(y) \right\}$, for all $x, \, y, \, z \in X.$

Clearly z = 0 gives μ is a anti fuzzy K- ideal of X.

Example: 4.3.

Consider INK-algebra $X = \{0, 1, 2, 3\}$ with the following cayley table.

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Define
$$\mu: X \rightarrow [0,1]$$
 by $\mu(0) = 0.2$, $\mu(1) = 0.3$, $\mu(2) = \mu(3) = 0.4$

$$\mu(0) \le \max\{\mu(3 \ast 0), \, \mu(3 \ast 1), \, \mu(1)\}$$

$$= \max\{\mu(3 * 1), \mu(1)\}$$

$$= max\{\mu(2), \mu(1)\}$$

$$0.2 = max\{0.4, 0.3\}$$

$$\div 0.2 \le 0.4$$

Then it is easy to verify that μ is anti fuzzy K- ideal.

Theorem: 4.4.

Let μ be a anti fuzzy K- ideal of a INK-algebra X. Then the following

are equivalent:

 $(K_1) \mu$ is a anti fuzzy k-ideal of X,

 $(K_2) \mu((x * y) * z) \le \mu(x * (y * z))$ for all x, y, z $\in X$,

$$(K_3) \mu(x * y) \le \mu(x * (0 * y)).$$

Proof.

 $(K_1) \rightarrow (K_2)$ since μ is a anti fuzzy K- ideal of X, we have

$$\mu((x * y) * z) \le \max \{\mu((x*y)*(0*z)),\mu(0)\}$$

= $\mu((x*y)*(0*z))$. On the other hand
 $(x*y)*(0*z) = (x * y) * ((y * z) * y)$
 $\le (x * (y * z))$

Consequently $\mu((x * y) * z)) \le \mu((x * y) * (0 * z)).$ $(K_2) \rightarrow (K_3)$ Letting y = 0 and z = y, $(K_3) \rightarrow (K_1)$ since $(x * (0 * y)) * (x * (z * y)) \le (z * y) * (0 * y) \le z$, we have $\mu(x * (0 * y)) \le \max{\{\mu(x * (z * y)), \mu(z)\}}.$ Hence by hypothesis

 $\mu(x * y) \le \max\{\mu(x * (z * y)), \mu(z)\}.$

Therefore μ is a anti fuzzy K-ideal of X.

Theorem: 4.5.

Every anti fuzzy K-ideal μ of a INK-algebra X is order reversing, that is if $x \ge y$ then: $\mu(x) \le \mu(y)$, for all x, $y \in X$.

Proof.

Let x, $y \in X$ such that $x \ge y$. Therefore x * y = 0, Put z = 0, Now,

 $\mu(x) = \mu(0 * x)$

$$\leq \max \{ \mu((z * x) * (z * y)), \mu(y) \}$$

$$= \max \{ \mu((0 * x) * (0 * y)), \mu(y) \}$$

 $= \max\{\mu(\mathbf{x} * \mathbf{y}), \, \mu(\mathbf{y})\}$

 $= \max{\mu(0), \mu(y)}$

 $\mu(x) = \mu(y)$. Hence complete the proof.

Theorem: 4.6.

Let μ be an anti-fuzzy ideal of INK-algebra X. If $\mu(x * y) \le \mu(x)$ for all x, $y \in X$, then μ is a K-ideal of X.

Proof:

Since μ is an anti-fuzzy ideal of X, by hypothesis we have $\max\{\mu(x^*(y * z)), \mu(y)\} \leq \max\{\mu((x * z) * (y * z)), \mu(y * z)\}$ $\leq \mu(x * z), \forall x, y, z \in X.$ Let X is an INK-algebra. A fuzzy set μ in X is called an anti-fuzzy sub algebra of X if $\mu(x * y) \le \max{\{\mu(x), \mu(y)\}}$ for all x, y, $z \in X$

Theorem: 4.7.

A fuzzy set μ in a INK-algebra X is a anti fuzzy K-ideal if and only if it is a anti fuzzy ideal of X.

Proof: Let μ be a anti fuzzy K-ideal of X.

Then i) $\mu(0) \le \mu(x)$ ii) $\mu(x)$

 $\leq \max \{\mu(x * y), \mu(y)\}$ for all x, y, z $\in X$.

Putting z = 0 in (ii) we have, $\mu(x) \le \max \{\mu(x * y), \mu(y)\}.$

Hence μ is a anti fuzzy ideal of X. Conversely, μ is a anti fuzzy ideal of X.

 $\mu(\mathbf{x}) \leq \max \{\mu(\mathbf{x} * \mathbf{y}), \mu(\mathbf{y})\}$

Then:
$$\mu(x) \le \max \{ \mu((0 * x) * (0 * y)), \mu(y) \}$$
.

if we replace z for 0, we have $\mu(x) \le \max \{\mu((z * x) * (z * y)), \mu(y)\}$

Hence a fuzzy set μ in a INK-algebra.

5 Cartesian products of anti-fuzzy K-ideals of INK-algebras

Definition: 5.1.

Let μ and ϑ be the fuzzy sets in a set X. The Cartesian product $\mu \times \vartheta$: X × X → [0, 1] is defined by: $\mu \times \vartheta$ (x, y) = max { μ (x), ϑ (y)}, for all x, y 2 X.

Theorem: 5.2.

If μ and ϑ are anti-fuzzy K-ideals in a INK- algebra

X, then $\mu \times \vartheta$ is a anti-fuzzy K-ideal in X \times X.

Proof.

If any $(x, y) \in X \times X$, we have: i) $(\mu \times \vartheta)(0, 0) = \max \{\mu(0), \vartheta(0)\}$ $\leq \max \{\mu(x), \vartheta(y)\}$ $= (\mu \times \vartheta)(x, y).$ ii) Let $(x_1, x_2), (y_1, y_2)$ and $(z_1, z_2) \in X \times X.$ $(\mu \times \mu)(x_1, x_2) = (\mu \times \vartheta)(x_1 * x_2)$ $= \max \{\mu(x_1), \vartheta(x_2)\}$ $\leq \max \{ \max \{ ((z_1 * x_1) * (z_1 * y_1)), \mu(y_1) \}, \\ \max \{ \vartheta((z_2 * x_2) * (z_2 * y_2)), \vartheta(y_2) \} \\ = \max \{ \max \{ \mu((z_1 * x_1) * (z_1 * y_1)), \vartheta((z_2 * x_2) * (z_2 * x_2)) \}, \\ \max \{ \mu(y_1), \vartheta(y_2) \} \\ = \max \{ (\mu \times \vartheta) ((z_1 * x_1) * (z_1 * y_1)), \vartheta((z_2 * x_2) * (z_2 * y_2)), \\ (\mu \times \vartheta) ((y_1, y_2) \}, \\ = \max \{ (\mu \times \vartheta) ((z_1, z_2) * (x_1, x_2)), \vartheta((z_1, z_2) * (y_1, y_2)), (\mu \times \vartheta)(y_1, y_2) \}.$

Hence ($\mu \times \vartheta$) is a anti fuzzy K-ideal of a INK-algebra in X \times X.

Theorem: 5.3.

Let μ and ϑ be fuzzy sets in a INK-algebra X such that $\mu \times \vartheta$ is a anti fuzzy K-ideal of X \times X.

- i) Either $\mu(0) \le \mu(x)$ or $\vartheta(0) \ge \vartheta(x)$, for all $x \ge X$
- ii) If $\mu(0) \le \mu(x)$, for all $x \in X$, either $\vartheta(0) \le \mu(x)$ or $\vartheta(0) \le (x)$
- iii) If $\vartheta(0) \le \vartheta(x)$, for all $x \in X$, either $\mu(0) \le \mu(x)$ or $\mu(0) \le \vartheta(x)$
- iv) Either μ or ϑ is a anti fuzzy K-ideal of X.

Proof.

 $\mu \times \vartheta$ is a anti fuzzy K-ideal of X×X. Therefore $(\mu \times \vartheta)(0, 0) \leq (\mu \times \vartheta)(x, y)$, for all $(x, y) \in X \in X$. And $(\mu \times \vartheta)(x_1, x_2)$

 $\leq \max \{(\mu \times \vartheta)((z_1, z_2) * (x_1, x_2)) * ((z_1, z_2) * (y_1, y_2)), (\mu \times \vartheta)(y_1, y_2)\} \text{,for all } (x_1, x_2), (y_1, y_2) \text{ and } (z_1, z_2) \in X \times X.$

Suppose that $\mu(0) > \mu(x)$ and $\vartheta(0) > \vartheta(y)$, for some x, $y \le X$.

Then: $(\mu \times \vartheta)(x, y) = \max \{\mu(x), \vartheta(y)\} < \max \{\mu(0), \vartheta(0)\} = (\mu \times \vartheta)(0, 0)$. a contradiction.

Therefore either $\mu(0) \le \mu(x)$ or $\vartheta(0) \le \vartheta(x)$, for all $x \in X$.

Assume that $\exists x, y \in X$ such that:

 $\vartheta(0) > \mu(x) \text{ and } \vartheta(0) < \vartheta(y).$ Then: $(\mu \times \vartheta)(0, 0) = \max \{\mu(0), \vartheta(0)\} = \vartheta(0)$

and hence $(\mu \times \vartheta)(x, y) = \max \{\mu(x), \vartheta(y)\} < \vartheta(0)$

= $(\mu \times \vartheta)(0, 0)$, a contradiction. Hence if $\mu(0) \le \mu(x)$, for all $x \in X$,

then either: $\mu(0) \le \mu(x)$ or $\mu(0) \le \vartheta(x)$

Similarly we can prove that if $\vartheta(0) < \vartheta(x)$, for all $x \in X$,

then either $\mu(0) \le \mu(x)$ or $\mu(0) \le \vartheta(x)$.

First we prove that ϑ is a anti fuzzy k-ideal of X.

Since ,by (i), either $\mu(0) \le \mu(x)$ or $\vartheta(0) \le \vartheta(x)$, for all $x \in X$.

Assume that $\vartheta(0) \le \vartheta(x)$ for all $x \in X$. It follows from (iii)

That either $\mu(0) \le \mu(x)$ or $\mu(0) \le \vartheta(x)$. If $\mu(0) \le \vartheta(x)$, for any $x \in X$,

then:
$$\vartheta(\mathbf{x}) = \max\{\mu(0), \vartheta(\mathbf{x})\}$$

$$= (\mu \times \vartheta)(0, \mathbf{x}). \vartheta(\mathbf{x})$$

$$= \max\{\mu(0), \vartheta(\mathbf{x})\} = (\mu \times \vartheta)(0, \mathbf{x})$$

$$\leq \max\{(\mu \times \vartheta)((0, z) * (0, x)) * ((0 * z) * (0, y)), (\mu \times \vartheta)(0, y)\}$$

$$= \max\{(\mu \times \vartheta)(((0 * 0), (z * x)) * ((0 * 0), (z * y))), (\mu \times \vartheta)(0, y)\}$$

$$= \min\{(\mu \times \vartheta)(((0 * 0) * (0 * 0)), ((z * x) * (z * y))), (\mu \times \vartheta)(0, y)\}$$

$$= \min\{(\mu \times \vartheta)(0, ((z * x) * (z * y))), (\mu \times \vartheta)(0, y)\}$$

$$\vartheta(\mathbf{x}) = \max\{\vartheta(z * x)^* (z^*y), \vartheta(y)\}.$$
Hence ϑ is a anti fuzzy K-ideal of X.
Now we will prove that μ is a anti fuzzy K-ideal of X. Let $\mu(0) \le \mu(\mathbf{x}).$
By(ii) either $\vartheta(0) \le (x)$ or $\vartheta(0) \le \vartheta(\mathbf{x}).$ Assume that $\vartheta(0) \le \vartheta(\mathbf{x}),$
Then: $\mu(\mathbf{x}) = \max\{\mu(\mathbf{x}), \vartheta(0)\}$

$$= (\mu \times \vartheta)(\mathbf{x}, 0).$$

$$\mu(\mathbf{x}) = \max\{\mu(\mathbf{x}), \vartheta(0)\}$$

$$= (\mu \times \vartheta)(\mathbf{x}, 0).$$

$$\max\{(\mu \times \vartheta)(((z * x), (0 * 0)) * ((z * 0) * (y, 0))), (\mu \times \vartheta)(\mathbf{y}, 0)\}$$

$$= \max\{(\mu \times \vartheta)(((z * x), (z * y)), ((0 * 0) * (0 * 0))), (\mu \times \vartheta)(\mathbf{y}, 0)\}$$

$$= \max\{(\mu \times \vartheta)(((z * x) * (z * y)), ((0 * 0) * (0 * 0))), (\mu \times \vartheta)(\mathbf{y}, 0)\}$$

$$\mu(\mathbf{x}) = \max\{\mu((z * y) * (y * z)), \mu(\mathbf{y})\}.$$

Hence μ is a anti fuzzy K-ideal of X.

6. Anti-homomorphism of INK-algebras

Definition: 6.1.

Let X₁ and X₂ be K-algebras. A mapping

 $g: X_1 \rightarrow X_2$ is said to be a anti homomorphism if it satisfies:

 $f(x_1 * x_2) = f(x_2) * f(x_1)$, for all x, $y \in X$.

Definition:6.2.

Let $g:X^1\to X^1$ be an endomorphism and μ

a fuzzy set in $X^1\!.$ We define a new fuzzy set in X by μ_g in X by

 $\mu_g(x) = \mu(g(x))$, for all x in X.

Theorem: 6.3.

Let f be an endomorphism of a INK- algebra X^1 . If μ is a anti fuzzy K-ideal of X^1 , then so is μ_g .

Proof :

$$\begin{split} \mu g(x) &= \mu(g(x)) * \mu(0) \\ &= \mu(g(0)) \\ &= \mu g(x). \text{ for all } x \in X^1. \text{ Let } x, y, z \in X^1. \end{split}$$
 $\begin{aligned} \text{Then: } \mu_g(x) &= \mu(g(x)) \\ &\leq \max \left\{ \mu((g(z) * g(x)) * (g(z) * g(y))), \mu(g(y)) \right\} \\ &= \max \left\{ \mu((g(z * x)) * g(z * y)), \mu(g(y)) \right\} \\ &= \max \left\{ \mu(g((z * x) * (z * y)), \mu(g(y)) \right\} \\ &= \max \left\{ \mu(g((z * x) * (z * y)), \mu(g(y)) \right\} \\ &= \max \left\{ \mu(g((z * x) * (z * y)), \mu(g(y)) \right\} \\ &= \max \left\{ \mu g((z * x) * (z * y)), \mu(g(y)) \right\} . \end{aligned}$ $\begin{aligned} \text{Hence } \mu_g \text{ is a fuzzy k-ideal of } X^1. \end{split}$

References

- [1] K. Iseki, On BCI-algebras, Math. Seminar Notes, 8 (1980), 125130.
- [2] K. Iseki and S. Tanaka, An introduction to the theory of BCK -algebras, Math. Japonica, 23 (1978), 126,
- [3] J.Neggers and H.S.Kim, "On B-algebras", math, vensik, 54 (2002), 21-29.
- [4] Y.B.Jun., 2009."Generalization of (∈, ∈ Λq) -fuzzy subalgebras in BCk /BCI-algebras". Comput.Math. Appl., 58: 1383-1390.
 DOI: 10.1016/j.camwa.2009.07.043
- [5] A.Tamilarasi, K. Megalai, TM-algebra an introduction, CASCT, 2010.
- [6] K. Megalai . and A. Tamilarasi, "Fuzzy Subalgebras and Fuzzy T- ideals in TM- algebra", Journal of Mathematics and Statistics 7(2) (2011) 107-111.
- [7] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.
- [8] Laszlo filep.Study of fuzzy algebras and relations from a general viewpoint, acta Mathematica Academiae Paedagogicae Nyrlregyhaziensis, Tonus 14(1998), 49-55.
- [9] W.B.Vasantha kandasamy. Smarandache fuzzy algebra.american research press, Rehoboth 2003.11-12.
- [10] I. M. Anthony and H. Sherwood. Fuzzy groups redefined, Journal Math. Anal. Appl.,(1979) 69:124-130,
- [11] M.Kaviyarasu, K.Indhira and V.M.Chandrasekaran (2017)
 "Fuzzy Sub algebras and Fuzzy K-ideals in INK-Algebras" International Journal of Pure and Applied Mathematics Volume 113 No. 6 2017, 47 - 55
- [12]W.A.Dudek, On proper BCC-algebra,Bull.Inst.Math Academia sinica,20 (1992),137-150